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Methods for the Numerical Solution of the 
Nonlinear Schroedinger Equation 

By J. M. Sanz-Serna 

Abstract. Optimal L2 rates of convergence are established for several fully-discrete schemes 
for the numerical solution of the nonlinear Schroedinger equation. Both finite differences and 
finite elements are considered for the discretization in space, while the integration in time is 
treated either by the leap-frog technique or by a modified Crank-Nicolson procedure, which 
generalizes the one suggested by Delfour, Fortin and Payne and possesses two useful 
conserved quantities. 

1. Introduction. The nonlinear Schroedinger equation 

(1.1) iut + Au + Alulp U = 0, i2 = -l,p> 1, 

has been used extensively to model nonlinear dispersive waves [10]. Here u is 
complex, u = u(x, t), x E Rn, t > 0 and A is a real constant. The pure initial value 
problem and the periodic value problem for (1.1) have the invariants of motion 

(1.2.a) E(u) = IuI dx, 

(1.2.b) I(u) =f?[iVUi2 -(A/(p + l))IuIP?I dx, 

which plays an important role in the analysis of the equation. A survey of results is 
provided by Strauss [10]. We recall that the regularity and existence for all positive t 
of the solutions depend on p, n and the sign of A. The conservation of the L2 norm 
guaranteed by (1.2.a) is not strong enough to ensure that the solutions are defined 
for all positive t. In fact, if A > 0, I(u( , 0)) < 0 and p > 1 + 4/n, then no smooth 
solution can exist for all positive t. On the other hand, if A < 0, (1.2.b) provides 
trivially a priori bounds for the H1 and LP+' norms, and use of the Sobolev 
inequality [10] reveals that those bounds also exist when A > 0, provided that 
p < 1 + 4/n. 

Zakharov and Shabat [14] developed an inverse scattering procedure for the initial 
value problem for (1.1), in the highly important particular case p = 3, n = 1, A > 0. 
It is useful to point out that in this case, the constant modulus, x-independent 
solution bexp(iAIbj2t) is "unstable" to 'infinitesimal' long-wave perturbations [13] 
(i.e. the linearization around that solution exhibits growing Fourier modes). This 
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phenomenon is related to the Benjamin-Feir [2] instability in the theory of water 
waves. Initially, the 'unstable' Fourier modes draw energy from the lower modes, but 
due to (1.2.a) this process cannot continue indefinitely, and in fact it is possible for 
the energy to return to its initial distribution among the Fourier modes after a period 
of time (Fermi-Pasta-Ulam recurrence [13]). 

A number of finite-difference and finite-element schemes have been suggested for 
the numerical study of (1.1). Delfour, Fortin and Payne [3] propose a modified 
Crank-Nicolson technique which conserves both (1.2.a) and (1.2.b) when finite 
elements are used for the discretization in space. (If finite differences in space are 
employed, the scheme conserves the discrete analogues of (1.2.a, b).) Griffiths, 
Mitchell and Morris [5] study predictor-corrector schemes. Sanz-Serna and 
Manoranjan [9] consider the leap-frog technique in time and also suggest a variable- 
step modification whereby (1.2.a) can be conserved. The importance of the numeri- 
cal conservation of the invariants of motion in the numerical study of partial 
differential equations describing wave phenomena cannot be overemphasized. In 
particular, it is well-known that failure in the conservation of (1.2.a) can lead to 
blow-up of the computed solution, and this is particularly so in the present instance 
due to the role played by the conservation laws in the dynamics of the solutions [5], 
[9]. Additional references for (1.1) and its numerical solution can be found in [3], [5], 
[10], [13]. 

In the present paper the energy method will be used in a standard way (cf. [4], [8], 
[12]) to study the convergence of the schemes cited above. For brevity we only 
present the proofs in the cases of a leap-frog finite-difference method and a modified 
Crank-Nicolson finite-element procedure which generalizes that of Delfour, Fortin 
and Payne. 

We consider the one-dimensional problem 

iut + uX + a(1U1 )u = 0, 

(1.3) u(x,t) = u(x + 1,t), x E R,t > 0, 

u(x,O) = uo(x) 

(with uo a given 1-periodic function), as the extension to problems with n = 2, 3 is 
easy. In (1.3), a(*) denotes a continuous real function of real argument, such that the 
composition z a*(z) = a(jzZ2) has continuous partial derivatives aa*/a(Rez), 
aa*/a(Im z) with respect to the real and imaginary parts of z. Thus the nonlineari- 
ties IuIP'- u are included in (1.3) provided that p > 2. 

The problem has the conserved quantities (1.2.a) and 

(1.4) I(u) = f4IuI2 - A(|uI2)I dx, 

where A(.) is a primitive function of a ( * ). These invariants of motion are derived by 
taking the imaginary part of the inner product of (1.3) and u, and by taking the real 
part of the inner product of (1.3) and ut, respectively. 

Throughout the paper we assume that the initial condition and the function a(-) 
are such Lhat (1.3) has a unique smooth solution u defined in 0 < t < T; cf. [10]. 
More precise smoothness assumptions are given later. 
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2. A Leap-Frog Scheme. We introduce a grid xj = jh, j = 0, ? 1, + 2, . . .h = 1/J, 
J a positive integer. If V, W are 1-periodic grid functions, we denote by Vj, Wj their 
values at xi and set 

J 

(2.1) (V, W) = h ,VJWJ 
j=1 

(2.2) 11 12= (V,V), 
(2.3) 62V =h-2[fV - 2Vj + Vj?] 

We shall need the identity 

(2.4) (V, 62W) = (82V, W) 

and the bound 

(2.5) 1182glI < 4 h- 2 1ll. 

The step length in time is denoted by k and a superscript n refers to the time level 
tn= nk. We set 

(2.6) DVjn= (1/2k)( Jn+1 - Vn-I) 

if V n, n = 0, 1,. .. ,N, is a family of grid functions and N = [T/k]. 
With this notation we are in a position to consider the method 

(2.7) iDJjn + 62b7 + a(|LIn )j jn = 0, j = 1,...,J; n = 1,...,N-1; 

for which the following result holds: 

THEOREM 1. Assume that u e C4 and that IIU0 - u0ll + IIU1 - u1ll = o(h1"2). If 
there exists a constant a with kh-2 < a < 1/4, then there exist positive constants Cm, 

m = 1, 2, 3, independent of k and h such that, for k < C1, h < C2, 

(2.8) U - u'i < C3(k2 + h2 U 0-,u0 + U1-u1i) O,1,...,N. 

Proof. We set enn= - un and 

(2.9) Bn = Ien|| + Ien-1112 + 2kIm(2en- 1, en). 

Use of (2.5) leads to the bounds 

(2.10) (1 - 4a)(lenl2 + Ilen 12) < B' , (1 + 4)(Ilen| +Ile ) 

so that Bn is a positive definite function of e , en-l. 
The truncation error defined by 

(2.11) Trjn = iDuj + 82u + a(u)u,; j= 1,...,J; n=1,...,N-1; 

is easily seen to be O(k2 + h2). 
Subtraction of (2.11) from (2.7), multiplication by -1n+i + e 1, summation and 

consideration of the imaginary part yield 

(2.12) (1/2k)(Bn+l - Bn) = -Im(a(l UnI2)Ut' - a( ull 2) ut, en+1 + e" 
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Here we have used the identity (2.4) and the definition of Bn. We now make the 
additional hypothesis that a*, aa*/a(Re z), aa*/a(Im z) are bounded. Then (2.12) 
implies 

(2.13) JIB"n+1 - BnI < k{II"n2 + 2IIe"+1 + en-1112 + KIIe"n12}, 

where K is a constant independent of k, h. The second inequality in (2.10) and 
Gronwall's lemma show that (2.8) holds for arbitrary k, h satisfying kh2 < a. 

In order to remove the additional hypothesis on boundedness, we resort to a 

standard argument (see [1] among others). A function a' is introduced which is 

bounded and possesses bounded derivatives and which agrees with a in a neighbor- 
hood of { u(x, t): 0 < x < 1, 0 < t < T }. An easy energy estimate shows that for a 
the problem (1.3) has at most one solution and therefore has no solution other than 

u. From the result above we conclude that when a is replaced by a', the discrete 

solutions satisfy (2.8) and in particular converge uniformly. But then for h, k small 

a(jU"j2) = a(jU"j2) and the proof is complete. 

Remark 1. An elementary computation shows that kh2 < 1/4 is the von Neu- 

mann condition for the equation iut + uxx = 0. 
Remark 2. The leap-frog scheme is very easy to code and rather cheap to run. 

However, numerical experiments reported in [9] reveal that it is subject to the 

occurrence of numerical blow-up. According to the theorem, the blow-up can be 

delayed by reducing k and h (see the discussion in [6]). A variable-step modification 

which conserves the discrete L2 norm of the solution is studied in [9]. Of course the 

blow-up can also be prevented by the introduction of artificial viscosity. 
Remark 3. The missing starting level U1 can be obtained by means of a one-step 

scheme based on the replacement of ut by forward differences. (See [9] for details.) 

3. A Modified Crank-Nicolson Scheme. In this section II 11, ( , ) represent the usual 

norm and inner product in the complex space L2(0, 1),11 * II. the supremum norm in 

L?(0, 1). We consider the periodic Sobolev space H' and for each of a family of 

values of h in (0,1) clustering at 0 denote by Sh a finite-dimensional subspace of H' 

An inverse assumption, 

sup{ h1/2II4IIo/14II: (p e Sh, + 0) = a < X 

(with a independent of h), is required. 

For each fixed value of t, let the H'-projection W(t) of u(t) onto Sh be defined by 

the relations W(t) E Sh, 

(3.1) (ux(t) - Wx(t), Ox) + (u(t) - W(t),pO) = 0 for all h in Sh, 

and assume that the following approximation property holds: 

There exists a positive integer r and a positive constant C, independent of h, such 

that 

(3.2) sup {IIu - W||OO +?ut - Wt|I} Chr. 
0W t t < T 

We also assume that uttt is continuous. 
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As in the previous section k denotes the step size in time, N= [T/k] and a 
superscript n refers to the level tn = nk. Furthermore we set 

(3.3) D+vn = k-'(vn+1 - vn) 

(3.4) Un112= (1/2)(vn+1 + Vn), 

if v71, n = 0, 1,... , N, is a family of functions indexed by n. 
It is also convenient to introduce a real function of two complex variables as 

follows: 

(3.5) F(zl, Z2) = [A(1 -A) - A(IZ21 )I/[Iz1 -1z21 

if jz11 + Iz22 and 

(3.6) F(zl, z2)= a(1z112) 

otherwise. From the mean value theorem and the properties of a(-) we conclude that 
Fis a continuous function and that F(zl, Z2) = a(j(z1 + Z2)/212) + O(IZ, - Z212). 

The modified Crank-Nicholson-Galerkin solution U n e Sh, n = 0,1,. .. ,N, is 
defined by 

(3.7) i(D+ U ,)- (uyt+/2 4p) + (F(un+l, un)un+1/2, <) = 0 

for all@ cE Sh, with uo - U0 'small'. 
The method contains as a particular case the Delfour, Fortin and Payne scheme 

[31, whose main idea goes back to Strauss and Vazquez [11]. The choices 0 = Un+112, 
,0 = D+ Un reveal that (3.7) conserves both (1.2.a) and (1.4). Therefore the computed 
solution possesses an a priori L2 bound (and according to the introduction, an a 
priori H' bound in some important particular cases). Note that the evaluation of F is 
essentially a numerical differentiation and may cause trouble due to cancellations in 
the denominator of (3.5). However, if a(-) is a polynomial, it is possible to write the 
right-hand side of (3.5) as a polynomial in Izl 2, 1z2 2thus avoiding the danger of 
cancellations. For instance for the nonlinearity ju12u (i.e. a(y) = y), F becomes 
U[IZ12 + IZ121. 

THEOREM 2. Assume that as h -* 0, IjU0 - uolj = o(h"'2), k = o(h). Then there 
exist positive constants Cm, m = 1, 2, independent of k and h, such that if h < Cl, (3.7) 
has a solution with 

(3.8) IIun - unjj < C2(k2 + hr +||U?-uoII), n = 0,1,...,N. 

Proof. A (Browder) fixed point argument shows the existence of solutions. We 
average the differential equation written in weak form at time levels n and n + 1 to 
obtain 

(3.9) i(D+ u,) - (ux '/2, ) +(F(un+l, un)u"+'/2 t) - (p11 ?) 
where kLN - Ipn lhl2 < Ck4, with C independent of k. Now define e = U - u, n = W 
- u, D = U - W, and use (3.1) (3.7), (3.8) to write 

(3.10) i(D+ n, 9) =-i(D+?q,p) + (-n?V2 q) + (qn?112 ?) 
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Set = n+ 1/2, note that (x, ,) is real and take imaginary parts to arrive at 

(3.11) D jjllnIj2 < 4lfnl+1/2,12 + IID 
n 

7112 + IlRn+1/2,12 + jpnfljj2 

+ |IF(Un+i' Un)Un+112 - F(Un+1 , un)Un+1/212 . 

Recall that due to the conserved quantities the norms IKInl have an a priori bound. 
We now inductively assume that I ImiK s 1, m = 0,1,. .. ,n. 

The only difficulty in (3.11) arises from the nonlinear term. With K a constant 
independent of k and h, whose value is not necessarily the same at each occurrence, 
we may write 

(3.12) ||F(U,n+I Un)Un+1/2 - F(un+ un)u+121 

< ||F(Un+l, Un)(Un+12 -Un+1/2 

+ ||(F(Un+', Un) - F(un+1' un)) un+1/2 

< (ln+11211 +I(Un+1' Un)F un+1 un)ll <, K(Ile,'' ? JF(U ' U)- F(U~, u~)) 

Now 

(3.13) ||F(Un+I, Un) n+1 = n 
Ia*(Un+1I2) a*(un+l/2)1 + IY11y 

Kln+ 1/211 + 11 y 1 

where we have set 

Yn = F(Un+I' Un) - F(Un+', un) - a*(Un+l/2) + a*(un+l/2) 

and we have assumed that a* has bounded derivatives. (This implies no loss of 
generality: we may resort to the argument used in the proof of Theorem 1.) 

The mean value theorem yields, pointwise, 

I Ynj < K(I un+1 - un?2 + -Un 1 _ un12) 

< K( 'n+ 112 ? IgnI2 + 1?[n+ 112 + IRjnI2 + Iun+ 1 - Un2 

so that, 

(3.14) 11 Ynll < K( llD n+1 l lRn+lil + jjDnjj jj;njl + ?|T)n+l||, 

+ ||71n|I2 + ||Un+1 - UnJI2) 

If IIgn+1'IK IKn1j < 1, then (3.14) yields 

11 Ynll < K( ||n+ III + jjtnjj + h2r + k2) 
which upon substitution in (3.11) gives (3.8) via Gronwall's lemma. In order to 
conclude the proof we must show that for k, h small I ImIIoK < 1, m = 0,1,.. 
Assume this to be true for m < n. Then (3.14) and the inverse inequality show 

IIYnJj < K(jjDnjj + h-17211Dn+1ll + h2r + k2). 

Substitution in (3.11) proves that 

(1- )11n+1 (1 + Kk)j1 + kK(h2r k4). 
Now (3.8) applies up to t = nk and one sees without difficulty that for k, h small 

n1 IIr o < I1. 

Remark. In the cases where conservation of (1.4) leads to a priori H' and L? 
bounds the inductional hypothesis of the proof can be dispensed with. 



NUMERICAL SOLUTION OF THE NONLINEAR SCHROEDINGER EQUATION 27 

4. Concluding Remarks. The study of the finite-difference analogue of the method 
in Section 3 presents no further difficulty. However to analyze the finite-element 
counterpart of the scheme in Section 2, the inverse assumption, 

(4.1) sup{h2IkkIIVIkkII2: h EI Sh O} = a < so 

(with a independent of h), is required. Under this hypothesis the condition akh-2 S 
a < 1 guarantees an optimal k2 + h' rate of convergence in the L2 norm. 

The analysis of the Euler-Crank-Nicolson predictor-corrector schemes [5] pre- 
sents no essential novelty. 

Full details of these extensions together with lengthier versions of the proofs of the 
theorems above can be found in [7], which is available from the present author. 
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